Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(*N*-benzoyl-*N'*,*N'*-diphenylthioureato- $\kappa^2 O$,*S*)cobalt(III)

Hiram Pérez,^a* Yvonne Mascarenhas,^b Ana María Plutín,^c Rodrigo de Souza Corrêa^b and Julio Duque^d

^aDepartamento de Química Inorgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba, ^bInstituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, ^cLaboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba, and ^dInstituto de Ciencia y Tecnología de Materiales, Universidad de la Habana, Habana 10400, Cuba Correspondence e-mail: hperez@fq.uh.cu

Received 16 February 2008; accepted 25 February 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.006 Å; R factor = 0.057; wR factor = 0.163; data-to-parameter ratio = 14.3.

In the title compound, $[Co(C_{20}H_{15}N_2OS)_3]$, the Co^{III} atom is coordinated by the S and O atoms of three *N*-benzoyl-*N'*,*N'*diphenylthiourea ligands in a slightly distorted octahedral geometry. The O and S atoms are in *cis* positions, while the positions between the O and S atoms are *trans*.

Related literature

For general background and related structures, see: Arslan *et al.* (2003); Jia *et al.* (2007). For ligand synthesis, see: Hernández *et al.* (2003).

Experimental

a = 10.460 (1) Å b = 13.591 (5) Å a = 20.515 (5) Å

 $\alpha = 93.371 (2)^{\circ}$ $\beta = 97.652 (5)^{\circ}$ $\gamma = 112.212 (5)^{\circ}$ $V = 2657.2 (12) \text{ Å}^{3}$ Z = 2

Data collection

Nonius KappaCCD diffractometer	16799 measured reflections
Absorption correction: Gaussian	9325 independent reflections
(Coppens et al., 1965)	7633 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.862, \ T_{\max} = 0.971$	$R_{\rm int} = 0.057$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ 654 parameters $wR(F^2) = 0.162$ H-atom parameters constrainedS = 1.13 $\Delta \rho_{max} = 0.34$ e Å $^{-3}$ 9325 reflections $\Delta \rho_{min} = -0.6$ e Å $^{-3}$

 Table 1

 Selected geometric parameters (Å, °).

O1-Co1	1.920 (2)	S1-Co1	2.2153 (9)
O2-Co1	1.923 (2)	S2-Co1	2.2169 (11)
O3-Co1	1.934 (2)	\$3-Co1	2.1985 (10)
O1-Co1-O2	85.41 (9)	O3-Co1-S1	176.42 (7)
O1-Co1-O3	87.12 (9)	S3-Co1-S1	88.94 (4)
O2-Co1-O3	85.99 (9)	O1-Co1-S2	177.27 (7)
O1-Co1-S3	89.85 (7)	O2-Co1-S2	92.85 (7)
O2-Co1-S3	175.21 (7)	O3-Co1-S2	90.66 (7)
O3-Co1-S3	93.07 (7)	S3-Co1-S2	91.86 (4)
O1-Co1-S1	95.85 (7)	S1-Co1-S2	86.31 (4)
O2-Co1-S1	92.24 (7)		

Data collection: *COLLECT* (Enraf–Nonius, 2000); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, Brazil, for allowing the X-ray data collection. The authors acknowledge financial support from Brazilian agencies CAPES (Project 018/05) and CNPq (Proyect 134576/2007–1).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2119).

References

- Arslan, H., Flörke, U. & Külcü, N. (2003). *Transition Met. Chem.* 28, 816–819.Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). *Acta Cryst.* 18, 1035–1038.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hernández, W., Spodine, E., Muñoz, J. C., Beyer, L., Schröder, U., Ferreira, J. & Pavani, M. (2003). *Bioinorg. Chem. Appl.* 1, 271–284.
- Jia, D.-X., Zhu, A.-M., Deng, J. & Zhang, Y. (2007). Z. Anorg. Allg. Chem. 633, 2059–2063.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Sheldrick G M (2008). *Acta Cryst* A64, 112–122

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Mo $K\alpha$ radiation $\mu = 0.49 \text{ mm}^{-1}$

 $0.22 \times 0.12 \times 0.03$ mm

T = 150 (2) K

Acta Cryst. (2008). E64, m503 [doi:10.1107/S160053680800531X]

Tris(*N*-benzoyl-*N'*,*N'*-diphenylthioureato- $\kappa^2 O$,*S*)cobalt(III)

H. Pérez, Y. Mascarenhas, A. M. Plutín, R. de Souza Corrêa and J. Duque

Comment

Substituted *N*-acylthioureas are well known as chelating agents. Over recent years, many transition metal complexes with thiourea derivatives have been reported (Arslan *et al.*, 2003), because this kind of ligands display a remarkably rich co-ordination chemistry.

In this paper, we report the crystal structure of the title compound (Fig. 1), which presents an octahedral environment about the Co^{III} atom with the ligands coordinating in a relatively distorted manner (Table 1). The Co—S bond lengths lie within the range of those found in the related structure (Jia *et al.*, 2007). The lengths of C—O, C—S and C—N bonds in the chelate rings are between characteristic single and double bond lengths; they are shorter than single bond and longer than double bond. These results can be explained by the existence of delocalization in the chelate rings. Fig. 2 shows the arrangement of the complex molecules in the unit cell.

Experimental

N-benzoyl-*N*',*N*'-diphenylthiourea ligand was synthesized according to a procedure described by Hernández *et al.* (2003), by converting benzoyl chloride into benzoyl isothiocyanate and then condensing with an appropriate amine. To an ethanol solution (30 ml) containing the ligand (0.66 g, 2 mmol) was added an ethanol solution of $Co(CH_3COO)_2 \cdot 4H_2O$ (0.25 g, 1 mmol). The solution was stirred at room temperature for 2 h, and at once a solution of NaOH (1 N) was added to adjust pH to the neutral value. The mixture was filtered and the filtrate was evaporated under reduced pressure to give a green solid, which was washed with acetone. Single crystals were obtained by slow evaporation of a chloroform/*N*,*N*-diphenylformamide solution (1:1, v/v) of the complex.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. View of the unit cell of the title compound.

Tris(*N*-benzoyl-*N*',*N*'-diphenylthioureato- $\kappa^2 O$,*S*)cobalt(III)

Crystal data	
[Co(C ₂₀ H ₁₅ N ₂ OS) ₃]	Z = 2
$M_r = 1053.13$	$F_{000} = 1092$
Triclinic, PI	$D_{\rm x} = 1.316 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.460 (1) Å	Cell parameters from 288 reflections
b = 13.591 (5) Å	$\theta = 2.9 - 26.4^{\circ}$
c = 20.515 (5) Å	$\mu = 0.49 \text{ mm}^{-1}$
$\alpha = 93.371 \ (2)^{\circ}$	T = 150 (2) K
$\beta = 97.652 \ (5)^{\circ}$	Block, green
$\gamma = 112.212 (5)^{\circ}$	$0.22\times0.12\times0.03~mm$
$V = 2657.2 (12) \text{ Å}^3$	

Data collection

Nonius KappaCCD diffractometer	7633 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.057$
Monochromator: graphite	$\theta_{max} = 25^{\circ}$
φ and ω scans	$\theta_{\min} = 3.0^{\circ}$
Absorption correction: Gaussian (Coppens <i>et al.</i> , 1965)	$h = -12 \rightarrow 12$
$T_{\min} = 0.862, \ T_{\max} = 0.971$	$k = -16 \rightarrow 16$
16799 measured reflections	$l = -24 \rightarrow 24$
9325 independent reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0786P)^2 + 0.1153P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.057$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.162$	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.13	$\Delta \rho_{\rm min} = -0.6 \ {\rm e} \ {\rm \AA}^{-3}$
9325 reflections	Extinction correction: none
654 parameters	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.6058 (3)	0.4720 (2)	0.18641 (13)	0.0483 (6)
C2	0.3964 (3)	0.4260 (2)	0.10944 (13)	0.0469 (6)
C3	0.7327 (3)	0.4463 (2)	0.19797 (13)	0.0522 (7)
C4	0.8459 (3)	0.5073 (3)	0.24551 (16)	0.0691 (9)
H4	0.8422	0.5638	0.272	0.083*
C5	0.9652 (4)	0.4848 (4)	0.2541 (2)	0.0955 (14)
Н5	1.0417	0.5265	0.2861	0.115*
C6	0.9707 (5)	0.4024 (5)	0.2161 (2)	0.1075 (16)
Н6	1.0511	0.3878	0.2221	0.129*
C7	0.8597 (5)	0.3404 (4)	0.1690 (2)	0.1022 (15)
H7	0.8646	0.2838	0.1432	0.123*
C8	0.7403 (4)	0.3618 (3)	0.15960 (18)	0.0731 (9)
H8	0.6646	0.3194	0.1275	0.088*
С9	0.3767 (3)	0.2802 (3)	0.02958 (14)	0.0563 (7)
C10	0.3225 (5)	0.1780 (3)	0.0435 (2)	0.0945 (13)
H10	0.2516	0.1568	0.0689	0.113*
C11	0.3739 (7)	0.1046 (4)	0.0193 (3)	0.134 (2)
H11	0.3365	0.0339	0.0282	0.161*
C12	0.4794 (7)	0.1369 (5)	-0.0175 (3)	0.1169 (17)
H12	0.5139	0.0881	-0.0334	0.14*
C13	0.5332 (5)	0.2388 (4)	-0.0307 (2)	0.0900 (12)
H13	0.6056	0.2606	-0.0553	0.108*
C14	0.4812 (3)	0.3111 (3)	-0.00779 (16)	0.0678 (8)
H14	0.5173	0.3812	-0.0178	0.081*
C15	0.1953 (3)	0.3554 (2)	0.01770 (14)	0.0535 (7)
C16	0.1959 (4)	0.3985 (3)	-0.04118 (17)	0.0737 (9)
H16	0.2796	0.4305	-0.0569	0.088*
C17	0.0722 (4)	0.3942 (4)	-0.07690 (19)	0.0913 (12)
H17	0.0735	0.4242	-0.1165	0.11*
C18	-0.0503 (4)	0.3472 (4)	-0.0554 (2)	0.0982 (14)
H18	-0.1333	0.3441	-0.0801	0.118*
C19	-0.0511 (4)	0.3043 (5)	0.0032 (2)	0.1144 (18)
H19	-0.1353	0.272	0.0186	0.137*
C20	0.0719 (4)	0.3084 (4)	0.03974 (18)	0.0858 (12)
H20	0.0703	0.279	0.0796	0.103*
C21	0.6062 (3)	0.8182 (2)	0.19445 (14)	0.0567 (7)
C22	0.4123 (3)	0.8152 (2)	0.24214 (14)	0.0553 (7)
C23	0.7319 (3)	0.8900 (3)	0.16920 (16)	0.0664 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C24	0.8101 (4)	0.8470 (3)	0.13729 (18)	0.0740 (9)
H24	0.7836	0.7731	0.1319	0.089*
C25	0.9257 (4)	0.9102 (4)	0.1135 (2)	0.1016 (13)
H25	0.9754	0.8797	0.0908	0.122*
C26	0.9668 (6)	1.0168 (5)	0.1230 (4)	0.153 (2)
H26	1.0469	1.0604	0.1079	0.184*
C27	0.8913 (6)	1.0628 (4)	0.1553 (4)	0.159 (3)
H27	0.9202	1.1368	0.1616	0.19*
C28	0.7733 (5)	0.9983 (3)	0.1780 (3)	0.1106 (14)
H28	0.7217	1.0287	0.1994	0.133*
C29	0.4254 (4)	0.9955 (3)	0.27415 (18)	0.0668 (9)
C30	0.4007 (5)	1.0494 (3)	0.2228 (2)	0.1031 (14)
H30	0.3414	1.012	0.1838	0.124*
C31	0.4642 (6)	1.1594 (4)	0.2294 (3)	0.1232 (18)
H31	0.4484	1.196	0.1943	0.148*
C32	0.5481 (6)	1.2144 (4)	0.2854 (3)	0.1056 (15)
H32	0.5874	1.2888	0.2896	0.127*
C33	0.5761 (5)	1.1622 (3)	0.3359 (2)	0.0985 (13)
H33	0.6372	1.2006	0.3742	0.118*
C34	0.5135 (4)	1.0506 (3)	0.3307 (2)	0.0827 (10)
H34	0.532	1.0144	0.3655	0.099*
C35	0.2295 (4)	0.8392 (2)	0.29742 (17)	0.0644 (8)
C36	0.2357 (4)	0.8093 (3)	0.36055 (18)	0.0777 (10)
H36	0.32	0.8131	0.3842	0.093*
C37	0.1148 (5)	0.7735 (3)	0.3880 (2)	0.0885 (12)
H37	0 1181	0.752	0.4302	0.106*
C38	-0.0086(5)	0.7691 (3)	0.3545(3)	0.0952 (13)
H38	-0.0887	0.7461	0.3739	0.114*
C39	-0.0140(5)	0 7985 (4)	0.2924(3)	0.1089(15)
H39	-0.0985	0.795	0.2691	0.131*
C40	0 1056 (4)	0.8338 (3)	0.2636(2)	0.0895(12)
H40	0.1011	0.8537	0.221	0.107*
C41	0.5351 (3)	0.6913 (2)	0.36616 (13)	0.107 0.0522(7)
C42	0.3583(3)	0.5191(2)	0.35847(13)	0.0522(7) 0.0518(7)
C43	0.5585(5)	0.3171(2) 0.7917(2)	0.33647(13) 0.41223(14)	0.0510(7) 0.0572(7)
C44	0.0137(5)	0.7717(2)	0.30512(18)	0.0372(7) 0.0734(9)
H44	0.7273 (4)	0.8634	0.3543	0.0734(7)
C45	0.7557	0.0630 (3)	0.33+3 0.4379 (2)	0.000
U45	0.8020 (3)	0.9039 (3)	0.4379 (2)	0.1027 (13)
C46	0.875	0.9761(A)	0.4202 0.4975(2)	0.125 0.1163 (17)
U40	0.8138	1.0375	0.5269	0.1105 (17)
C47	0.6178 (6)	1.0373	0.5209	0.14°
U47	0.6101	0.0992 (4)	0.5144 (2)	0.1141(17) 0.137*
C48	0.0191 0.5748 (4)	0.9098	0.3343	0.137
UT0 H/8	0.3740 (4)	0.753	0.4854	0.0022 (11)
C/0	0.7507	0.735	0.46147 (15)	0.077
C50	0.2037(3)	0.4004(2)	0.40147(13)	0.0303(7)
U50	0.1909 (4)	0.5550 (5)	0.40040 (17)	0.0748 (9)
1150 C51	0.1002	0.5860 (2)	0.52800 (10)	0.09'
CJI	0.1730 (4)	0.3009 (3)	0.52009 (19)	0.004/(11)

H51	0.1293	0.6333	0.5318	0.102*
C52	0.2211 (4)	0.5497 (3)	0.58357 (19)	0.0822 (11)
H52	0.2062	0.5708	0.6249	0.099*
C53	0.2890 (4)	0.4818 (3)	0.57807 (18)	0.0847 (11)
Н53	0.3209	0.4573	0.6158	0.102*
C54	0.3106 (4)	0.4492 (3)	0.51650 (17)	0.0751 (9)
H54	0.3563	0.4028	0.5127	0.09*
C55	0.2017 (4)	0.3380 (3)	0.37298 (16)	0.0625 (8)
C56	0.0584 (4)	0.2992 (3)	0.3611 (2)	0.0851 (11)
Н56	0.0121	0.3441	0.3689	0.102*
C57	-0.0175 (5)	0.1915 (4)	0.3370 (3)	0.1113 (16)
H57	-0.1148	0.1646	0.3282	0.134*
C58	0.0513 (7)	0.1254 (4)	0.3263 (3)	0.1168 (17)
H58	0.0004	0.0536	0.3105	0.14*
C59	0.1918 (6)	0.1639 (4)	0.3386 (3)	0.1068 (15)
H59	0.2378	0.1187	0.3311	0.128*
C60	0.2684 (4)	0.2704 (3)	0.3622 (2)	0.0830 (11)
H60	0.3657	0.2964	0.3708	0.1*
N1	0.5092 (2)	0.4108 (2)	0.13594 (11)	0.0542 (6)
N2	0.3234 (2)	0.3561 (2)	0.05438 (11)	0.0532 (6)
N3	0.5350 (3)	0.8671 (2)	0.22344 (13)	0.0613 (6)
N4	0.3564 (3)	0.8799 (2)	0.26916 (13)	0.0634 (7)
N5	0.4330 (3)	0.61702 (19)	0.38961 (11)	0.0557 (6)
N6	0.2803 (3)	0.4495 (2)	0.39679 (12)	0.0597 (6)
01	0.6057 (2)	0.54725 (16)	0.22486 (10)	0.0576 (5)
02	0.5835 (2)	0.72042 (17)	0.18653 (10)	0.0611 (5)
O3	0.5765 (2)	0.68743 (16)	0.31129 (9)	0.0561 (5)
S1	0.33442 (8)	0.52013 (7)	0.13271 (4)	0.0583 (2)
S2	0.31150 (8)	0.68008 (6)	0.23515 (4)	0.0580 (2)
S3	0.34463 (8)	0.46920 (6)	0.27777 (4)	0.0569 (2)
Col	0.46544 (4)	0.60548 (3)	0.228631 (17)	0.05040 (14)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0521 (15)	0.0543 (16)	0.0415 (14)	0.0212 (13)	0.0147 (12)	0.0109 (12)
C2	0.0520 (15)	0.0505 (15)	0.0406 (14)	0.0206 (12)	0.0138 (12)	0.0066 (11)
C3	0.0510 (15)	0.0656 (18)	0.0443 (15)	0.0248 (14)	0.0137 (12)	0.0123 (13)
C4	0.0580 (18)	0.095 (3)	0.0499 (17)	0.0253 (17)	0.0081 (14)	0.0105 (16)
C5	0.055 (2)	0.162 (4)	0.068 (2)	0.041 (2)	0.0051 (17)	0.021 (3)
C6	0.082 (3)	0.190 (5)	0.086 (3)	0.088 (3)	0.021 (2)	0.023 (3)
C7	0.096 (3)	0.153 (4)	0.094 (3)	0.089 (3)	0.018 (3)	0.008 (3)
C8	0.069 (2)	0.089 (3)	0.071 (2)	0.0436 (19)	0.0102 (17)	0.0014 (18)
C9	0.0630 (17)	0.0615 (18)	0.0483 (16)	0.0301 (15)	0.0080 (13)	-0.0010 (13)
C10	0.122 (3)	0.076 (3)	0.107 (3)	0.053 (2)	0.046 (3)	0.026 (2)
C11	0.185 (6)	0.085 (3)	0.172 (6)	0.084 (4)	0.059 (5)	0.036 (3)
C12	0.165 (5)	0.130 (4)	0.109 (4)	0.112 (4)	0.037 (4)	0.008 (3)
C13	0.099 (3)	0.129 (4)	0.068 (2)	0.074 (3)	0.015 (2)	-0.001 (2)

C14	0.070 (2)	0.084 (2)	0.0570 (18)	0.0390 (18)	0.0137 (15)	-0.0014 (16)
C15	0.0559 (16)	0.0611 (18)	0.0451 (15)	0.0265 (14)	0.0050 (12)	0.0002 (13)
C16	0.071 (2)	0.093 (3)	0.0577 (19)	0.0288 (19)	0.0153 (16)	0.0235 (18)
C17	0.088 (3)	0.127 (4)	0.066 (2)	0.048 (3)	0.007 (2)	0.038 (2)
C18	0.074 (2)	0.158 (4)	0.074 (3)	0.059 (3)	0.004 (2)	0.028 (3)
C19	0.061 (2)	0.193 (5)	0.090 (3)	0.044 (3)	0.018 (2)	0.050 (3)
C20	0.067 (2)	0.133 (4)	0.061 (2)	0.037 (2)	0.0155 (17)	0.036 (2)
C21	0.0709 (19)	0.0569 (18)	0.0443 (15)	0.0253 (15)	0.0160 (14)	0.0032 (13)
C22	0.0697 (18)	0.0557 (17)	0.0484 (16)	0.0313 (15)	0.0164 (14)	0.0054 (13)
C23	0.073 (2)	0.063 (2)	0.0609 (19)	0.0215 (16)	0.0237 (16)	0.0033 (15)
C24	0.071 (2)	0.078 (2)	0.072 (2)	0.0268 (18)	0.0225 (18)	0.0010 (18)
C25	0.088	0.097 (3)	0.125 (4)	0.031 (2)	0.053 (2)	0.011 (3)
C26	0.133	0.103 (4)	0.232 (7)	0.025 (3)	0.120 (4)	0.034 (4)
C27	0.137	0.071 (3)	0.278 (9)	0.022 (3)	0.121 (4)	0.029 (4)
C28	0.12	0.065 (2)	0.153 (4)	0.026 (2)	0.073 (3)	0.013 (3)
C29	0.081 (2)	0.0542 (18)	0.077 (2)	0.0317 (17)	0.0355 (18)	0.0091 (16)
C30	0.143 (4)	0.074 (3)	0.085 (3)	0.034 (3)	0.016 (3)	0.022 (2)
C31	0.173 (5)	0.069 (3)	0.122 (4)	0.036 (3)	0.026 (4)	0.042 (3)
C32	0.135 (4)	0.059 (2)	0.117 (4)	0.022 (3)	0.047 (3)	0.017 (3)
C33	0.102 (3)	0.075 (3)	0.097 (3)	0.013 (2)	0.019 (2)	-0.005 (2)
C34	0.096 (3)	0.064 (2)	0.084 (3)	0.026 (2)	0.019 (2)	0.0080 (19)
C35	0.081 (2)	0.0531 (18)	0.071 (2)	0.0345 (16)	0.0291 (17)	0.0042 (15)
C36	0.093 (3)	0.080 (2)	0.069 (2)	0.038 (2)	0.0292 (19)	0.0081 (18)
C37	0.126 (3)	0.078 (3)	0.077 (2)	0.045 (2)	0.051 (3)	0.0134 (19)
C38	0.105 (3)	0.080 (3)	0.126 (4)	0.048 (2)	0.064 (3)	0.019 (2)
C39	0.086 (3)	0.133 (4)	0.133 (4)	0.062 (3)	0.037 (3)	0.031 (3)
C40	0.097 (3)	0.105 (3)	0.096 (3)	0.062 (2)	0.037 (2)	0.037 (2)
C41	0.0597 (16)	0.0582 (17)	0.0428 (15)	0.0271 (14)	0.0105 (13)	0.0049 (12)
C42	0.0602 (16)	0.0558 (17)	0.0435 (15)	0.0262 (14)	0.0107 (13)	0.0091 (12)
C43	0.0668 (18)	0.0590 (18)	0.0464 (16)	0.0270 (15)	0.0068 (13)	-0.0002 (13)
C44	0.078 (2)	0.070 (2)	0.064 (2)	0.0184 (18)	0.0174 (17)	-0.0032 (17)
C45	0.111 (3)	0.069 (2)	0.095 (3)	0.000 (2)	0.023 (3)	-0.016 (2)
C46	0.141 (4)	0.085 (3)	0.088 (3)	0.014 (3)	0.017 (3)	-0.037 (3)
C47	0.149 (4)	0.098 (3)	0.075 (3)	0.026 (3)	0.033 (3)	-0.027 (2)
C48	0.106 (3)	0.079 (2)	0.055 (2)	0.028 (2)	0.0250 (19)	-0.0085 (17)
C49	0.0646 (18)	0.0595 (18)	0.0517 (17)	0.0221 (15)	0.0173 (14)	0.0106 (14)
C50	0.097 (2)	0.083 (2)	0.059 (2)	0.047 (2)	0.0255 (18)	0.0180 (17)
C51	0.105 (3)	0.095 (3)	0.074 (2)	0.054 (2)	0.035 (2)	0.012 (2)
C52	0.095 (3)	0.095 (3)	0.060 (2)	0.034 (2)	0.0327 (19)	0.0102 (19)
C53	0.101 (3)	0.104 (3)	0.053 (2)	0.040 (2)	0.0191 (19)	0.0177 (19)
C54	0.092 (2)	0.085 (2)	0.060 (2)	0.045 (2)	0.0193 (18)	0.0199 (18)
C55	0.076 (2)	0.0565 (18)	0.0569 (18)	0.0241 (16)	0.0196 (15)	0.0118 (14)
C56	0.080 (3)	0.075 (2)	0.098 (3)	0.025 (2)	0.023 (2)	0.008 (2)
C57	0.084 (3)	0.085 (3)	0.137 (4)	0.006 (2)	0.018 (3)	-0.003 (3)
C58	0.137 (4)	0.062 (3)	0.133 (4)	0.016 (3)	0.038 (4)	-0.001 (3)
C59	0.134 (4)	0.066 (3)	0.130 (4)	0.045 (3)	0.041 (3)	0.010 (2)
C60	0.094 (3)	0.063 (2)	0.102 (3)	0.037 (2)	0.027 (2)	0.016 (2)
N1	0.0537 (13)	0.0633 (15)	0.0472 (13)	0.0275 (12)	0.0045 (11)	-0.0044 (11)
N2	0.0539 (13)	0.0634 (15)	0.0448 (13)	0.0280 (12)	0.0050 (10)	-0.0022 (11)
	× /	· /	· /	· /	· /	· /

N3	0.0752 (16)	0.0557 (15)	0.0592 (15)	0.0277 (13)	0.0261 (13)	0.0055 (12)
N4	0.0788 (17)	0.0516 (14)	0.0708 (17)	0.0309 (13)	0.0330 (14)	0.0078 (12)
N5	0.0651 (15)	0.0552 (14)	0.0459 (13)	0.0215 (12)	0.0137 (11)	0.0044 (11)
N6	0.0744 (16)	0.0534 (14)	0.0524 (14)	0.0233 (13)	0.0181 (12)	0.0092 (11)
01	0.0645 (12)	0.0599 (12)	0.0493 (11)	0.0280 (10)	0.0051 (9)	-0.0025 (9)
02	0.0790 (14)	0.0606 (13)	0.0504 (11)	0.0301 (11)	0.0250 (10)	0.0049 (9)
O3	0.0648 (12)	0.0574 (12)	0.0442 (11)	0.0202 (10)	0.0165 (9)	0.0007 (9)
S1	0.0745 (5)	0.0677 (5)	0.0434 (4)	0.0429 (4)	0.0027 (3)	-0.0004 (3)
S2	0.0676 (5)	0.0544 (4)	0.0583 (4)	0.0291 (4)	0.0179 (4)	0.0036 (3)
S3	0.0691 (5)	0.0532 (4)	0.0457 (4)	0.0218 (4)	0.0080 (3)	0.0026 (3)
Co1	0.0635 (3)	0.0525 (3)	0.0396 (2)	0.02712 (19)	0.01122 (17)	0.00224 (16)

Geometric parameters (Å, °)

C1-N11.33 1 (4)C32-H320.93C1-C31.480 (4)C33-C341.397 (5)C2-N11.325 (4)C33-H330.93C2-N21.362 (3)C34-H340.93C2-S11.710 (3)C35-C401.360 (5)C3-C41.377 (4)C35-C361.381 (5)C3-C81.388 (4)C35-N41.447 (4)C4-C51.385 (5)C36-H360.93C5-C61.351 (7)C37-C381.358 (6)C5-C61.351 (7)C37-C381.358 (6)C5-C61.351 (7)C37-H370.93C6-C71.363 (6)C38-C391.357 (7)C6-H60.93C38-H380.93C7-C81.378 (5)C39-C401.387 (6)C7-C81.378 (5)C39-H390.93C8-H80.93C40-H400.93C9-C101.351 (5)C41-O31.264 (3)C9-C141.368 (4)C41-N51.330 (4)C9-N21.444 (4)C41-C431.491 (4)C10-C111.395 (6)C42-N51.331 (4)C10-C111.395 (6)C42-N51.331 (4)C10-C111.395 (6)C42-N51.331 (4)C10-C111.395 (6)C42-N51.331 (4)C10-C111.395 (6)C42-N51.331 (4)C10-C111.395 (6)C42-N51.331 (4)C10-C111.395 (6)C42-N51.336 (5)C11-H110.93C43-C441.367 (5)C12-C131.343 (7)C43-C48	C1—O1	1.254 (3)	C32—C33	1.351 (7)
C1-C31.489 (4)C33-C341.397 (5)C2-N11.325 (4)C33-H330.93C2-N21.362 (3)C34-H340.93C2-S11.710 (3)C35-C401.360 (5)C3-C41.377 (4)C35-C361.381 (5)C3-C81.388 (4)C35-N41.447 (4)C4-C51.385 (5)C36-C371.382 (5)C5-C61.351 (7)C37-C381.358 (6)C5-C61.351 (7)C37-C381.358 (6)C5-C61.363 (6)C38-C391.357 (7)C6-H60.93C38-H380.93C7-C81.378 (5)C39-C401.387 (6)C7-H70.93C39-H390.93C8-H80.93C40-H400.93C9-C101.351 (5)C41-O31.264 (3)C9-C141.366 (4)C41-N51.330 (4)C9-N21.444 (4)C41-C431.491 (4)C10-C111.395 (6)C42-N51.331 (4)C10-C111.395 (6)C42-N51.331 (4)C10-C111.395 (6)C42-N51.331 (4)C10-C110.93C43-C481.387 (4)C12-C131.343 (7)C43-C481.357 (5)C13-C141.378 (5)C44-H440.93C13-C161.373 (4)C46-C471.361 (6)C15-C161.373 (4)C46-C471.361 (6)C15-C161.378 (5)C47-H470.93C15-N21.442 (4)C47-C481.359 (5)C15-N21.455 (5)C47-H47 <td>C1—N1</td> <td>1.331 (4)</td> <td>С32—Н32</td> <td>0.93</td>	C1—N1	1.331 (4)	С32—Н32	0.93
C2-N11.325 (4) $C33-H33$ 0.93 $C2-N2$ 1.362 (3) $C34-H34$ 0.93 $C2-S1$ 1.710 (3) $C35-C40$ 1.360 (5) $C3-C4$ 1.377 (4) $C35-C36$ 1.381 (5) $C3-C3$ 1.388 (4) $C35-M4$ 1.447 (4) $C4-C5$ 1.385 (5) $C36-C37$ 1.382 (5) $C4-H4$ 0.93 $C36-H36$ 0.93 $C5-C6$ 1.351 (7) $C37-C38$ 1.358 (6) $C5-H5$ 0.93 $C3-H37$ 0.93 $C6-C7$ 1.363 (6) $C38-C39$ 1.357 (7) $C6-C7$ 1.363 (6) $C38-H38$ 0.93 $C7-C8$ 1.378 (5) $C39-C40$ 1.387 (6) $C7-H7$ 0.93 $C39-H39$ 0.93 $C9-C10$ 1.351 (5) $C41-O3$ 1.264 (3) $C9-C10$ 1.351 (5) $C41-O3$ 1.264 (3) $C9-C14$ 1.368 (4) $C41-N5$ 1.330 (4) $C9-N2$ 1.444 (4) $C41-C43$ 1.491 (4) $C10-C11$ 1.395 (6) $C42-N5$ 1.331 (4) $C10-H10$ 0.93 $C42-N6$ 1.362 (4) $C1-H11$ 0.93 $C43-C44$ 1.376 (5) $C12-C13$ 1.343 (7) $C43-C48$ 1.387 (4) $C12-H12$ 0.93 $C45-H45$ 0.93 $C13-H13$ 0.93 $C45-H46$ 0.93 $C13-H14$ 0.93 $C45-H46$ 0.93 $C15-H2$ $1.379 (5)$ $C44-H46$ 0.93 $C15-H2$ $1.373 (4)$ $C46-H46$ 0.93 $C15-H2$	C1—C3	1.489 (4)	C33—C34	1.397 (5)
C2-N2 $1.362 (3)$ $C34-H34$ 0.93 $C2-S1$ $1.710 (3)$ $C35-C40$ $1.360 (5)$ $C3-C4$ $1.377 (4)$ $C35-C36$ $1.381 (5)$ $C3-C8$ $1.388 (4)$ $C35-N4$ $1.447 (4)$ $C4-C5$ $1.385 (5)$ $C36-C37$ $1.382 (5)$ $C4-H4$ 0.93 $C36-H36$ 0.93 $C5-C6$ $1.351 (7)$ $C37-C38$ $1.358 (6)$ $C5-H5$ 0.93 $C37-H37$ 0.93 $C6-H6$ 0.93 $C3-H38$ 0.93 $C7-C8$ $1.378 (5)$ $C39-C40$ $1.387 (6)$ $C7-H7$ 0.93 $C39-H39$ 0.93 $C9-C10$ $1.351 (5)$ $C41-O3$ $1.264 (3)$ $C9-C14$ $1.368 (4)$ $C41-N5$ $1.330 (4)$ $C9-N2$ $1.444 (4)$ $C41-C43$ $1.491 (4)$ $C10-C11$ $1.395 (6)$ $C42-N5$ $1.331 (4)$ $C10-H10$ 0.93 $C42-N6$ $1.362 (4)$ $C10-H10$ 0.93 $C42-N6$ $1.362 (4)$ $C1-H11$ 0.93 $C43-C44$ $1.376 (5)$ $C12-C13$ $1.343 (7)$ $C43-C44$ $1.376 (5)$ $C13-H13$ 0.93 $C45-C46$ $1.361 (6)$ $C13-H14$ 0.93 $C45-H45$ 0.93 $C15-L20$ $1.359 (4)$ $C46-C47$ $1.361 (6)$ $C15-H21$ $1.373 (4)$ $C46-H46$ 0.93 $C15-H21$ $1.378 (5)$ $C47-H48$ 0.93 $C15-H21$ $1.378 (5)$ $C47-H48$ 0.93 $C15-H21$ $1.373 (4)$	C2—N1	1.325 (4)	С33—Н33	0.93
C2-S11.710 (3)C35-C401.360 (5)C3-C41.377 (4)C35-C361.381 (5)C3-C81.388 (4)C35-N41.447 (4)C4-C51.385 (5)C36-C371.382 (5)C4-H40.93C36-H360.93C5-C61.351 (7)C37-C381.358 (6)C5-H50.93C37-H370.93C6-C71.363 (6)C38-C391.357 (7)C6-H60.93C38-H380.93C7-C81.378 (5)C39-C401.387 (6)C7-H70.93C39-H390.93C8-H80.93C40-H400.93C9-C101.351 (5)C41-O31.264 (3)C9-C141.368 (4)C41-N51.330 (4)C9-N21.444 (4)C41-C431.491 (4)C10-C111.395 (6)C42-N51.331 (4)C10-C111.395 (6)C42-N51.331 (4)C10-C110.93C42-N61.362 (4)C11-H110.93C43-C441.376 (5)C12-C131.343 (7)C43-C481.387 (4)C12-H120.93C44-C451.379 (5)C13-C141.378 (5)C44-H440.93C13-H130.93C45-H450.93C13-C161.373 (4)C46-C471.361 (6)C15-N21.442 (4)C47-C481.369 (5)C15-N21.442 (4)C47-C481.369 (5)C16-C171.378 (5)C47-H470.93C15-N21.442 (4)C47-C481.369 (5) <tr< td=""><td>C2—N2</td><td>1.362 (3)</td><td>С34—Н34</td><td>0.93</td></tr<>	C2—N2	1.362 (3)	С34—Н34	0.93
C3-C41.377 (4)C35-C361.381 (5)C3-C81.388 (4)C35-N41.447 (4)C4-C51.385 (5)C36-C371.382 (5)C4-H40.93C36-H360.93C5-C61.351 (7)C37-C381.358 (6)C5-H50.93C37-H370.93C6-C71.363 (6)C38-C391.357 (7)C6-H60.93C39-H380.93C7-C81.378 (5)C39-C401.387 (6)C7-H70.93C39-H390.93C8-H80.93C40-H400.93C9-C101.351 (5)C41-O31.264 (3)C9-C141.368 (4)C41-N51.330 (4)C10-C111.395 (6)C42-N51.331 (4)C10-C111.395 (6)C42-N51.331 (4)C10-C111.395 (6)C42-N51.331 (4)C10-H100.93C43-C441.365 (5)C12-C131.343 (7)C43-C441.376 (5)C12-C131.343 (7)C43-C441.376 (5)C13-C141.378 (5)C44-H440.93C13-H130.93C45-C461.363 (6)C14-H140.93C45-C461.361 (6)C15-N21.442 (4)C47-C481.369 (5)C15-N21.442 (4)C47-C481.369 (5)C15-N21.442 (4)C47-C481.369 (5)C16-C171.378 (5)C47-H470.93C15-N21.442 (4)C47-C481.369 (5)C16-C171.378 (5)C47-H470.93	C2—S1	1.710 (3)	C35—C40	1.360 (5)
C3-C81.388 (4)C35-N41.447 (4)C4-C51.385 (5)C36-C371.382 (5)C4-H40.93C36-H360.93C5-C61.351 (7)C37-C381.358 (6)C5-H50.93C37-H370.93C6-C71.363 (6)C38-H380.93C7-C81.378 (5)C39-C401.387 (6)C7-H70.93C39-H390.93C8-H80.93C40-H400.93C9-C101.351 (5)C41-O31.264 (3)C9-C141.368 (4)C41-N51.330 (4)C9-N21.444 (4)C41-C431.491 (4)C10-C111.395 (6)C42-N51.331 (4)C10-H100.93C42-N61.362 (4)C11-H110.93C43-C441.376 (5)C12-C131.343 (7)C43-C481.387 (4)C12-H120.93C44-C451.379 (5)C13-H130.93C45-C461.363 (6)C14-H140.93C45-C461.363 (6)C13-H130.93C45-C461.363 (6)C15-C201.359 (4)C46-C471.361 (6)C15-N21.442 (4)C47-C481.369 (5)C15-N21.442 (4)C47-C480.93C15-N21.442 (4)C47-C480.93C15-N21.442 (4)C47-C480.93C15-N21.442 (4)C47-C480.93C15-N21.442 (4)C47-C480.93C15-N21.442 (4)C47-C480.93C15-N2<	C3—C4	1.377 (4)	C35—C36	1.381 (5)
C4—C51.385 (5)C36—C371.382 (5)C4—H40.93C36—H360.93C5—C61.351 (7)C37—C381.358 (6)C5—H50.93C37—H370.93C6—C71.363 (6)C38—C391.357 (7)C6—H60.93C38—H380.93C7—C81.378 (5)C39—C401.387 (6)C7—H70.93C39—C400.93C8—H80.93C40—H400.93C9—C101.351 (5)C41—O31.264 (3)C9—C141.368 (4)C41—N51.330 (4)C9—N21.444 (4)C41—C431.491 (4)C10—C111.395 (6)C42—N51.331 (4)C10—H100.93C42—N61.362 (4)C11—C121.370 (7)C42—S31.718 (3)C12—C131.343 (7)C43—C441.376 (5)C12—C131.343 (7)C43—C441.376 (5)C13—C141.378 (5)C44—H440.93C13—H130.93C45—C461.363 (6)C14—H140.93C45—C461.363 (6)C15—C201.359 (4)C46—C471.361 (6)C15—N21.442 (4)C47—C481.369 (5)C15—C161.373 (4)C46—H460.93C15—N21.442 (4)C47—C480.93C15—N21.442 (4)C47—C480.93C15—N21.442 (4)C47—C480.93C15—N21.442 (4)C47—C480.93C15—N21.442 (4)C47—C480.93C15—N2	C3—C8	1.388 (4)	C35—N4	1.447 (4)
C4H40.93C36H360.93C5C61.351 (7)C37C381.358 (6)C5H50.93C37H370.93C6C71.363 (6)C38C391.357 (7)C6H60.93C38H380.93C7C81.378 (5)C39C401.387 (6)C7H70.93C39H390.93C8H80.93C40H400.93C9C101.351 (5)C41O31.264 (3)C9C141.368 (4)C41C431.491 (4)C10C111.395 (6)C42N51.331 (4)C10H100.93C42N61.362 (4)C11C121.370 (7)C42S31.718 (3)C11H110.93C44C451.376 (5)C12C131.343 (7)C43C441.376 (5)C13C141.378 (5)C44H440.93C13H130.93C45C461.363 (6)C14H140.93C45C461.363 (6)C14H140.93C45C461.363 (6)C14H140.93C45C461.363 (6)C15C201.359 (4)C46C471.361 (6)C15C161.373 (4)C46H460.93C15N21.442 (4)C47C481.369 (5)C16C171.378 (5)C47H470.93C16H160.93C48H480.93C16H160.93C48H480.93C16H160.93C48H480.93C16H160.93C48H48<	C4—C5	1.385 (5)	C36—C37	1.382 (5)
C5C6 $1.351(7)$ C37C38 $1.358(6)$ C5H50.93C37H370.93C6C7 $1.363(6)$ C38C39 $1.357(7)$ C6H60.93C38H380.93C7C8 $1.378(5)$ C39C40 $1.387(6)$ C7H70.93C39-H390.93C8H80.93C40H400.93C9C10 $1.351(5)$ C41O3 $1.264(3)$ C9C14 $1.368(4)$ C41N5 $1.330(4)$ C9N2 $1.444(4)$ C41C43 $1.491(4)$ C10C11 $1.395(6)$ C42N5 $1.331(4)$ C10H100.93C42N6 $1.362(4)$ C11C12 $1.370(7)$ C42S3 $1.718(3)$ C12C13 $1.343(7)$ C43C44 $1.376(5)$ C13C14 $1.378(5)$ C44C45 $1.379(5)$ C13C14 $1.378(5)$ C44H440.93C13H130.93C45C46 $1.363(6)$ C14H140.93C45C46 $1.363(6)$ C15C20 $1.359(4)$ C46C47 $1.361(6)$ C15N2 $1.442(4)$ C47C48 $1.369(5)$ C16C17 $1.378(5)$ C47H470.93C16H160.93C48H480.93C16H160.93C48H480.93C16H160.93C48H480.93C16H160.93C48H480.93	C4—H4	0.93	С36—Н36	0.93
C5-H5 0.93 $C37$ -H37 0.93 C6-C7 $1.363 (6)$ $C38$ -C39 $1.357 (7)$ C6-H6 0.93 $C38$ -H38 0.93 C7-C8 $1.378 (5)$ $C39$ -C40 $1.387 (6)$ C7-H7 0.93 $C39$ -H39 0.93 C8-H8 0.93 C40-H40 0.93 C9-C10 $1.351 (5)$ C41-O3 $1.264 (3)$ C9-C14 $1.368 (4)$ C41-C43 $1.491 (4)$ C10-C11 $1.395 (6)$ C42-N5 $1.331 (4)$ C10-H10 0.93 C42-N6 $1.362 (4)$ C11-C12 $1.370 (7)$ C42-S3 $1.718 (3)$ C11-H11 0.93 C43-C44 $1.376 (5)$ C12-C13 $1.343 (7)$ C43-C48 $1.387 (4)$ C12-H12 0.93 C44-C45 $1.379 (5)$ C13-C14 $1.378 (5)$ C44-H44 0.93 C13-H13 0.93 C45-C46 $1.363 (6)$ C14-H14 0.93 C45-H45 0.93 C15-N2 $1.442 (4)$ C47-C48 $1.361 (6)$ C15-N2 $1.442 (4)$ C47-C48 0.93 C15-N2 $1.442 (4)$ C47-C48 0.93 C15-N2 $1.442 (4)$ C47-C48 0.93 C16-H16 0.93 C48-H48 0.93	C5—C6	1.351 (7)	C37—C38	1.358 (6)
C6-C71.363 (6) $C38-C39$ $1.357 (7)$ $C6-H6$ 0.93 $C38-H38$ 0.93 $C7-C8$ 1.378 (5) $C39-C40$ $1.387 (6)$ $C7-H7$ 0.93 $C39-H39$ 0.93 $C8-H8$ 0.93 $C40-H40$ 0.93 $C9-C10$ 1.351 (5) $C41-O3$ $1.264 (3)$ $C9-C14$ 1.368 (4) $C41-N5$ $1.330 (4)$ $C9-N2$ 1.444 (4) $C41-C43$ $1.491 (4)$ $C10-C11$ 1.395 (6) $C42-N5$ $1.331 (4)$ $C10-H10$ 0.93 $C42-N6$ $1.362 (4)$ $C11-C12$ 1.370 (7) $C42-S3$ $1.718 (3)$ $C12-C13$ 1.343 (7) $C43-C48$ $1.387 (4)$ $C12-H12$ 0.93 $C44-C45$ $1.379 (5)$ $C13-C14$ 1.378 (5) $C44-H44$ 0.93 $C15-C20$ 1.359 (4) $C46-C47$ $1.361 (6)$ $C15-C16$ 1.373 (4) $C46-H46$ 0.93 $C15-N2$ 1.442 (4) $C47-C48$ $1.369 (5)$ $C16-C17$ 1.378 (5) $C49-C50$ $1.368 (5)$ $C17-C18$ 1.345 (5) $C49-C50$ $1.368 (5)$	С5—Н5	0.93	С37—Н37	0.93
C6—H60.93C38—H380.93C7—C81.378 (5)C39—C401.387 (6)C7—H70.93C39—H390.93C8—H80.93C40—H400.93C9—C101.351 (5)C41—O31.264 (3)C9—C141.368 (4)C41—N51.330 (4)C9—N21.444 (4)C41—C431.491 (4)C10—C111.395 (6)C42—N51.331 (4)C10—H100.93C42—N61.362 (4)C11—C121.370 (7)C42—S31.718 (3)C12—C131.343 (7)C43—C441.376 (5)C13—C141.378 (5)C44—H440.93C13—H130.93C45—C461.363 (6)C14—H140.93C45—H450.93C15—C201.359 (4)C46—C471.361 (6)C15—C161.373 (4)C46—H460.93C15—N21.442 (4)C47—C481.369 (5)C16—H160.93C48—H480.93C16—H160.93C48—H480.93C16—H160.93C48—H480.93C16—H160.93C48—H480.93	C6—C7	1.363 (6)	C38—C39	1.357 (7)
C7-C8 $1.378 (5)$ $C39-C40$ $1.387 (6)$ $C7-H7$ 0.93 $C39-H39$ 0.93 $C8-H8$ 0.93 $C40-H40$ 0.93 $C9-C10$ $1.351 (5)$ $C41-O3$ $1.264 (3)$ $C9-C14$ $1.368 (4)$ $C41-N5$ $1.330 (4)$ $C9-N2$ $1.444 (4)$ $C41-C43$ $1.491 (4)$ $C10-C11$ $1.395 (6)$ $C42-N5$ $1.331 (4)$ $C10-H10$ 0.93 $C42-N6$ $1.362 (4)$ $C11-C12$ $1.370 (7)$ $C42-S3$ $1.718 (3)$ $C11-H11$ 0.93 $C43-C44$ $1.376 (5)$ $C12-C13$ $1.343 (7)$ $C43-C48$ $1.387 (4)$ $C12-H12$ 0.93 $C44-C45$ $1.379 (5)$ $C13-C14$ $1.378 (5)$ $C44-H44$ 0.93 $C13-H13$ 0.93 $C45-H45$ 0.93 $C15-C20$ $1.359 (4)$ $C46-C47$ $1.361 (6)$ $C15-C16$ $1.373 (4)$ $C46-H46$ 0.93 $C15-N2$ $1.442 (4)$ $C47-C48$ $1.369 (5)$ $C16-C17$ $1.378 (5)$ $C47-H47$ 0.93 $C16-H16$ 0.93 $C48-H48$ 0.93 $C16-H16$ 0.93 $C48-H48$ 0.93	С6—Н6	0.93	С38—Н38	0.93
C7-H7 0.93 $C39-H39$ 0.93 $C8-H8$ 0.93 $C40-H40$ 0.93 $C9-C10$ $1.351 (5)$ $C41-O3$ $1.264 (3)$ $C9-C14$ $1.368 (4)$ $C41-N5$ $1.330 (4)$ $C9-N2$ $1.444 (4)$ $C41-C43$ $1.491 (4)$ $C10-C11$ $1.395 (6)$ $C42-N5$ $1.331 (4)$ $C10-H10$ 0.93 $C42-N6$ $1.362 (4)$ $C11-C12$ $1.370 (7)$ $C42-S3$ $1.718 (3)$ $C11-H11$ 0.93 $C43-C44$ $1.376 (5)$ $C12-C13$ $1.343 (7)$ $C43-C48$ $1.387 (4)$ $C12-H12$ 0.93 $C44-C45$ $1.379 (5)$ $C13-C14$ $1.378 (5)$ $C44-H44$ 0.93 $C13-H13$ 0.93 $C45-C46$ $1.363 (6)$ $C14-H14$ 0.93 $C45-C46$ $1.361 (6)$ $C15-C20$ $1.359 (4)$ $C46-C47$ $1.361 (6)$ $C15-N2$ $1.442 (4)$ $C47-C48$ $1.369 (5)$ $C15-N2$ $1.442 (4)$ $C47-C48$ $1.369 (5)$ $C16-C17$ $1.378 (5)$ $C47-H47$ 0.93 $C16-H16$ 0.93 $C48-H48$ 0.93 $C16-H16$ 0.93 $C48-H48$ 0.93 $C16-H16$ 0.93 $C48-H48$ 0.93 $C16-H16$ 0.93 $C48-H48$ 0.93	С7—С8	1.378 (5)	C39—C40	1.387 (6)
C8—H80.93C40—H400.93C9—C101.351 (5)C41—O31.264 (3)C9—C141.368 (4)C41—N51.330 (4)C9—C141.368 (4)C41—C431.491 (4)C10—C111.395 (6)C42—N51.331 (4)C10—H100.93C42—N61.362 (4)C11—C121.370 (7)C42—S31.718 (3)C11—H110.93C43—C441.376 (5)C12—C131.343 (7)C43—C481.387 (4)C12—H120.93C44—C451.379 (5)C13—C141.378 (5)C44—H440.93C13—H130.93C45—C461.363 (6)C14—H140.93C45—H450.93C15—C201.359 (4)C46—C471.361 (6)C15—C161.373 (4)C46—H460.93C15—N21.442 (4)C47—C481.369 (5)C16—C171.378 (5)C47—H470.93C16—H160.93C48—H480.93C16—H160.93C48—H480.93C16—H160.93C48—H480.93	С7—Н7	0.93	С39—Н39	0.93
C9—C10 $1.351 (5)$ C41—O3 $1.264 (3)$ C9—C14 $1.368 (4)$ C41—N5 $1.330 (4)$ C9—N2 $1.444 (4)$ C41—C43 $1.491 (4)$ C10—C11 $1.395 (6)$ C42—N5 $1.331 (4)$ C10—H10 0.93 C42—N6 $1.362 (4)$ C11—C12 $1.370 (7)$ C42—S3 $1.718 (3)$ C12—C13 $1.343 (7)$ C43—C48 $1.387 (4)$ C12—H12 0.93 C44—C45 $1.379 (5)$ C13—C14 $1.378 (5)$ C44—H44 0.93 C13—H13 0.93 C45—C46 $1.363 (6)$ C14—H14 0.93 C45—H45 0.93 C15—C20 $1.359 (4)$ C46—C47 $1.361 (6)$ C15—C16 $1.373 (4)$ C46—H46 0.93 C15—N2 $1.442 (4)$ C47—C48 $1.369 (5)$ C16—C17 $1.378 (5)$ C47—H47 0.93 C16—H16 0.93 C48—H48 0.93 C16—H16 0.93 C48—H48 0.93	С8—Н8	0.93	C40—H40	0.93
C9—C141.368 (4)C41—N51.330 (4)C9—N21.444 (4)C41—C431.491 (4)C10—C111.395 (6)C42—N51.331 (4)C10—H100.93C42—N61.362 (4)C11—C121.370 (7)C42—S31.718 (3)C11—H110.93C43—C441.376 (5)C12—C131.343 (7)C43—C481.387 (4)C12—H120.93C44—C451.379 (5)C13—C141.378 (5)C44—H440.93C13—H130.93C45—C461.363 (6)C14—H140.93C45—H450.93C15—C201.359 (4)C46—C471.361 (6)C15—C161.373 (4)C46—H460.93C15—N21.442 (4)C47—C481.369 (5)C16—C171.378 (5)C44—H480.93C16—H160.93C48—H480.93C16—H160.93C48—H480.93C16—H160.93C48—H480.93C17—C181.345 (5)C49—C501.368 (5)	C9—C10	1.351 (5)	C41—O3	1.264 (3)
C9—N2 $1.444 (4)$ C41—C43 $1.491 (4)$ C10—C11 $1.395 (6)$ C42—N5 $1.331 (4)$ C10—H10 0.93 C42—N6 $1.362 (4)$ C11—C12 $1.370 (7)$ C42—S3 $1.718 (3)$ C11—H11 0.93 C43—C44 $1.376 (5)$ C12—C13 $1.343 (7)$ C43—C48 $1.387 (4)$ C12—H12 0.93 C44—C45 $1.379 (5)$ C13—C14 $1.378 (5)$ C44—H44 0.93 C13—H13 0.93 C45—C46 $1.363 (6)$ C14—H14 0.93 C45—H45 0.93 C15—C20 $1.359 (4)$ C46—C47 $1.361 (6)$ C15—N2 $1.442 (4)$ C47—C48 $1.369 (5)$ C16—C17 $1.378 (5)$ C47—H47 0.93 C16—H16 0.93 C48—H48 0.93 C17—C18 $1.345 (5)$ C49—C50 $1.368 (5)$	C9—C14	1.368 (4)	C41—N5	1.330 (4)
C10—C11 $1.395(6)$ C42—N5 $1.331(4)$ C10—H10 0.93 C42—N6 $1.362(4)$ C11—C12 $1.370(7)$ C42—S3 $1.718(3)$ C11—H11 0.93 C43—C44 $1.376(5)$ C12—C13 $1.343(7)$ C43—C48 $1.387(4)$ C12—H12 0.93 C44—C45 $1.379(5)$ C13—C14 $1.378(5)$ C44—H44 0.93 C13—H13 0.93 C45—C46 $1.363(6)$ C14—H14 0.93 C45—H45 0.93 C15—C20 $1.359(4)$ C46—C47 $1.361(6)$ C15—C16 $1.373(4)$ C46—H46 0.93 C15—N2 $1.442(4)$ C47—C48 $1.369(5)$ C16—H16 0.93 C48—H48 0.93 C16—H16 0.93 C48—H48 0.93 C17—C18 $1.345(5)$ C49—C50 $1.368(5)$	C9—N2	1.444 (4)	C41—C43	1.491 (4)
C10—H100.93C42—N61.362 (4)C11—C121.370 (7)C42—S31.718 (3)C11—H110.93C43—C441.376 (5)C12—C131.343 (7)C43—C481.387 (4)C12—H120.93C44—C451.379 (5)C13—C141.378 (5)C44—H440.93C13—H130.93C45—C461.363 (6)C14—H140.93C45—C461.361 (6)C15—C201.359 (4)C46—C471.361 (6)C15—C161.373 (4)C46—H460.93C15—N21.442 (4)C47—C481.369 (5)C16—C171.378 (5)C47—H470.93C16—H160.93C48—H480.93C17—C181.345 (5)C49—C501.368 (5)	C10-C11	1.395 (6)	C42—N5	1.331 (4)
C11—C12 1.370 (7)C42—S3 1.718 (3)C11—H11 0.93 C43—C44 1.376 (5)C12—C13 1.343 (7)C43—C48 1.387 (4)C12—H12 0.93 C44—C45 1.379 (5)C13—C14 1.378 (5)C44—H44 0.93 C13—H13 0.93 C45—C46 1.363 (6)C14—H14 0.93 C45—H45 0.93 C15—C20 1.359 (4)C46—C47 1.361 (6)C15—C16 1.373 (4)C46—H46 0.93 C15—N2 1.442 (4)C47—C48 1.369 (5)C16—C17 1.378 (5)C48—H48 0.93 C16—H16 0.93 C48—H48 0.93 C17—C18 1.345 (5)C49—C50 1.368 (5)	C10—H10	0.93	C42—N6	1.362 (4)
C11—H110.93C43—C441.376 (5)C12—C131.343 (7)C43—C481.387 (4)C12—H120.93C44—C451.379 (5)C13—C141.378 (5)C44—H440.93C13—H130.93C45—C461.363 (6)C14—H140.93C45—H450.93C15—C201.359 (4)C46—C471.361 (6)C15—C161.373 (4)C46—H460.93C15—N21.442 (4)C47—C481.369 (5)C16—C171.378 (5)C47—H470.93C16—H160.93C48—H480.93C17—C181.345 (5)C49—C501.368 (5)	C11—C12	1.370 (7)	C42—S3	1.718 (3)
$\begin{array}{cccccccc} C12C13 & 1.343 (7) & C43C48 & 1.387 (4) \\ C12H12 & 0.93 & C44C45 & 1.379 (5) \\ C13C14 & 1.378 (5) & C44H44 & 0.93 \\ C13H13 & 0.93 & C45C46 & 1.363 (6) \\ C14H14 & 0.93 & C45H45 & 0.93 \\ C15C20 & 1.359 (4) & C46C47 & 1.361 (6) \\ C15C16 & 1.373 (4) & C46H46 & 0.93 \\ C15N2 & 1.442 (4) & C47C48 & 1.369 (5) \\ C16C17 & 1.378 (5) & C47H47 & 0.93 \\ C16H16 & 0.93 & C48H48 & 0.93 \\ C17C18 & 1.345 (5) & C49C50 & 1.368 (5) \\ \end{array}$	C11—H11	0.93	C43—C44	1.376 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C13	1.343 (7)	C43—C48	1.387 (4)
C13—C141.378 (5)C44—H440.93C13—H130.93C45—C461.363 (6)C14—H140.93C45—H450.93C15—C201.359 (4)C46—C471.361 (6)C15—C161.373 (4)C46—H460.93C15—N21.442 (4)C47—C481.369 (5)C16—C171.378 (5)C47—H470.93C16—H160.93C48—H480.93C17—C181.345 (5)C49—C501.368 (5)	C12—H12	0.93	C44—C45	1.379 (5)
C13—H130.93C45—C461.363 (6)C14—H140.93C45—H450.93C15—C201.359 (4)C46—C471.361 (6)C15—C161.373 (4)C46—H460.93C15—N21.442 (4)C47—C481.369 (5)C16—C171.378 (5)C47—H470.93C16—H160.93C48—H480.93C17—C181.345 (5)C49—C501.368 (5)	C13—C14	1.378 (5)	C44—H44	0.93
C14—H140.93C45—H450.93C15—C201.359 (4)C46—C471.361 (6)C15—C161.373 (4)C46—H460.93C15—N21.442 (4)C47—C481.369 (5)C16—C171.378 (5)C47—H470.93C16—H160.93C48—H480.93C17—C181.345 (5)C49—C501.368 (5)	С13—Н13	0.93	C45—C46	1.363 (6)
C15—C201.359 (4)C46—C471.361 (6)C15—C161.373 (4)C46—H460.93C15—N21.442 (4)C47—C481.369 (5)C16—C171.378 (5)C47—H470.93C16—H160.93C48—H480.93C17—C181.345 (5)C49—C501.368 (5)	C14—H14	0.93	C45—H45	0.93
C15—C161.373 (4)C46—H460.93C15—N21.442 (4)C47—C481.369 (5)C16—C171.378 (5)C47—H470.93C16—H160.93C48—H480.93C17—C181.345 (5)C49—C501.368 (5)	C15—C20	1.359 (4)	C46—C47	1.361 (6)
C15—N21.442 (4)C47—C481.369 (5)C16—C171.378 (5)C47—H470.93C16—H160.93C48—H480.93C17—C181.345 (5)C49—C501.368 (5)	C15—C16	1.373 (4)	C46—H46	0.93
C16—C171.378 (5)C47—H470.93C16—H160.93C48—H480.93C17—C181.345 (5)C49—C501.368 (5)	C15—N2	1.442 (4)	C47—C48	1.369 (5)
C16—H160.93C48—H480.93C17—C181.345 (5)C49—C501.368 (5)	C16—C17	1.378 (5)	C47—H47	0.93
C17—C18 1.345 (5) C49—C50 1.368 (5)	С16—Н16	0.93	C48—H48	0.93
	C17—C18	1.345 (5)	C49—C50	1.368 (5)

C17—H17	0.93	C49—C54	1.370 (5)
C18—C19	1.367 (6)	C49—N6	1.446 (4)
C18—H18	0.93	C50—C51	1.388 (5)
C19—C20	1.380 (5)	С50—Н50	0.93
С19—Н19	0.93	C51—C52	1.374 (6)
C20—H20	0.93	C51—H51	0.93
C21—O2	1.256 (4)	C52—C53	1.370 (5)
C21—N3	1.339 (4)	С52—Н52	0.93
C21—C23	1.490 (4)	C53—C54	1.388 (5)
C22—N3	1.331 (4)	С53—Н53	0.93
C22—N4	1.357 (4)	С54—Н54	0.93
C22—S2	1.723 (3)	C55—C56	1.369 (5)
C23—C28	1.362 (5)	C55—C60	1.373 (5)
C23—C24	1.378 (4)	C55—N6	1.439 (4)
C24—C25	1.364 (5)	C56—C57	1.395 (6)
C24—H24	0.93	С56—Н56	0.93
C25—C26	1.340 (7)	C57—C58	1.372 (7)
C25—H25	0.93	С57—Н57	0.93
C26—C27	1.384 (7)	C58—C59	1.342 (7)
C26—H26	0.93	C58—H58	0.93
C27—C28	1.375 (6)	C59—C60	1.381 (6)
С27—Н27	0.93	С59—Н59	0.93
C28—H28	0.93	С60—Н60	0.93
C29—C34	1.359 (5)	O1—Co1	1.920 (2)
C29—C30	1.368 (6)	O2—Co1	1.923 (2)
C29—N4	1.450 (4)	O3—Co1	1.934 (2)
C30—C31	1.377 (6)	S1—Co1	2.2153 (9)
С30—Н30	0.93	S2—Co1	2.2169 (11)
C31—C32	1.335 (7)	S3—Co1	2.1985 (10)
C31—H31	0.93		()
01—C1—N1	129.8 (3)	C37—C36—H36	120.5
01 - 01 - 03	129.0(3) 116.1(2)	C_{38} C_{37} C_{36}	120.5
N1-C1-C3	110.1(2) 114.0(2)	$C_{38} = C_{37} = H_{37}$	121.2 (4)
N1_C2_N2	114.0(2)	C36—C37—H37	119.4
N1 - C2 - N2	113.0(2) 129.9(2)	$C_{30} - C_{38} - C_{37}$	119.4
$N_{2} = C_{2} = S_{1}$	129.9(2) 117.0(2)	$C_{39} - C_{38} - H_{38}$	119.3 (4)
$C_{4} = C_{2} = S_{1}$	117.0(2) 118.7(3)	C37_C38_H38	120.3
$C_{4} - C_{3} - C_{3}$	110.7(3)	$C_{38} - C_{39} - C_{40}$	120.5
$C^{\ast} = C^{\ast} = C^{\ast}$	120.9(3)	$C_{38} = C_{39} = C_{40}$	120.5 (5)
$C_0 = C_1 = C_1$	120.3(3)	$C_{38} = C_{39} = H_{39}$	119.8
$C_3 = C_4 = C_3$	110.0	$C_{40} = C_{50} = 1157$	119.8
$C_5 = C_4 = H_4$	119.9	$C_{33} = C_{40} = C_{37}$	120.0 (4)
$C_{5} = C_{4} = 114$	119.9	$C_{33} = C_{40} = H_{40}$	120
C6 C5 H5	120.1 (4)	$C_{3} = C_{40} = 1140$	120 1 (2)
$C_0 = C_0 = C_0$	120	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	127.1(3) 1150(2)
C_{4}	120	$V_{3} = C_{41} = C_{43}$	113.7(3)
$C_{5} = C_{6} = H_{6}$	120.0 (4)	N5 C42 N6	113.0(2)
	117.0	$1N_{3} - C_{42} - 1N_{0}$	114.2(2)
$C_1 - C_0 - \Pi_0$	119.0	$1N_{3} - C_{42} - S_{3}$	129.7 (2)
L0-L/-L8	120.0 (4)	NO-U42-33	110.1 (2)

С6—С7—Н7	120	C44—C43—C48	118.8 (3)
С8—С7—Н7	120	C44—C43—C41	120.3 (3)
C7—C8—C3	120.2 (4)	C48—C43—C41	120.9 (3)
С7—С8—Н8	119.9	C43—C44—C45	120.6 (3)
С3—С8—Н8	119.9	C43—C44—H44	119.7
C10-C9-C14	120.0 (3)	C45—C44—H44	119.7
C10-C9-N2	119.5 (3)	C46—C45—C44	119.6 (4)
C14—C9—N2	120.5 (3)	C46—C45—H45	120.2
C9—C10—C11	119.4 (4)	C44—C45—H45	120.2
C9—C10—H10	120.3	C47—C46—C45	120.6 (4)
C11—C10—H10	120.3	C47—C46—H46	119.7
C12—C11—C10	119.9 (5)	C45—C46—H46	119.7
C12—C11—H11	120.1	C46—C47—C48	120.2 (4)
C10-C11-H11	120.1	C46—C47—H47	119.9
C13—C12—C11	120.3 (4)	C48—C47—H47	119.9
C13—C12—H12	119.9	C47—C48—C43	120.2 (4)
C11—C12—H12	119.9	C47—C48—H48	119.9
C12—C13—C14	120.0 (4)	C43—C48—H48	119.9
C12—C13—H13	120	C50—C49—C54	121.0 (3)
C14—C13—H13	120	C50—C49—N6	119.3 (3)
C9—C14—C13	120.4 (4)	C54—C49—N6	119.6 (3)
C9—C14—H14	119.8	C49—C50—C51	119.6 (3)
C13—C14—H14	119.8	C49—C50—H50	120.2
C20—C15—C16	119.2 (3)	С51—С50—Н50	120.2
C20—C15—N2	120.4 (3)	C52—C51—C50	119.8 (4)
C16—C15—N2	120.4 (3)	C52—C51—H51	120.1
C15—C16—C17	119.9 (3)	С50—С51—Н51	120.1
С15—С16—Н16	120	C53—C52—C51	120.1 (3)
С17—С16—Н16	120	С53—С52—Н52	120
C18—C17—C16	121.1 (4)	С51—С52—Н52	120
С18—С17—Н17	119.5	C52—C53—C54	120.3 (4)
С16—С17—Н17	119.5	С52—С53—Н53	119.8
C17—C18—C19	119.1 (4)	С54—С53—Н53	119.8
C17—C18—H18	120.4	C49—C54—C53	119.2 (4)
C19—C18—H18	120.4	C49—C54—H54	120.4
C18—C19—C20	120.5 (4)	С53—С54—Н54	120.4
C18—C19—H19	119.8	C56—C55—C60	119.6 (3)
С20—С19—Н19	119.8	C56—C55—N6	119.4 (3)
C15—C20—C19	120.2 (3)	C60—C55—N6	120.9 (3)
C15—C20—H20	119.9	C55—C56—C57	119.3 (4)
C19—C20—H20	119.9	С55—С56—Н56	120.3
O2—C21—N3	129.2 (3)	С57—С56—Н56	120.3
O2—C21—C23	115.1 (3)	C58—C57—C56	120.1 (4)
N3—C21—C23	115.7 (3)	С58—С57—Н57	120
N3—C22—N4	114.2 (3)	С56—С57—Н57	120
N3—C22—S2	130.4 (2)	C59—C58—C57	120.2 (4)
N4—C22—S2	115.3 (2)	С59—С58—Н58	119.9
C28—C23—C24	118.7 (3)	С57—С58—Н58	119.9
C28—C23—C21	121.3 (3)	C58—C59—C60	120.3 (4)

C24—C23—C21	120.0 (3)	С58—С59—Н59	119.8
C25—C24—C23	121.5 (4)	С60—С59—Н59	119.8
C25—C24—H24	119.2	C55—C60—C59	120.4 (4)
C23—C24—H24	119.2	С55—С60—Н60	119.8
C26—C25—C24	119.4 (4)	С59—С60—Н60	119.8
C26—C25—H25	120.3	C2—N1—C1	126.2 (2)
C24—C25—H25	120.3	C2—N2—C15	123.3 (2)
C25—C26—C27	120.6 (4)	C2—N2—C9	119.4 (2)
С25—С26—Н26	119.7	C15—N2—C9	117.3 (2)
С27—С26—Н26	119.7	C22—N3—C21	123.7 (3)
C28—C27—C26	119.6 (5)	C22—N4—C35	122.7 (3)
С28—С27—Н27	120.2	C22—N4—C29	121.3 (2)
С26—С27—Н27	120.2	C35—N4—C29	115.9 (2)
C23—C28—C27	120.1 (4)	C41—N5—C42	124.2 (2)
C23—C28—H28	120	C42—N6—C55	121.9 (2)
C27—C28—H28	120	C42—N6—C49	121.0 (2)
C34—C29—C30	119.9 (4)	C55—N6—C49	116.9 (2)
C34—C29—N4	119.5 (3)	C1—O1—Co1	130.12 (18)
C30-C29-N4	120.5 (4)	C21—O2—Co1	129.07 (18)
C29—C30—C31	119.5 (5)	C41—O3—Co1	126.90 (19)
С29—С30—Н30	120.2	C2—S1—Co1	106.23 (10)
С31—С30—Н30	120.2	C22—S2—Co1	103.40 (11)
C32—C31—C30	121.0 (5)	C42—S3—Co1	106.22 (10)
C32—C31—H31	119.5	O1—Co1—O2	85.41 (9)
С30—С31—Н31	119.5	O1—Co1—O3	87.12 (9)
C31—C32—C33	120.1 (4)	O2—Co1—O3	85.99 (9)
C31—C32—H32	119.9	O1—Co1—S3	89.85 (7)
С33—С32—Н32	119.9	O2—Co1—S3	175.21 (7)
C32—C33—C34	120.2 (4)	O3—Co1—S3	93.07 (7)
С32—С33—Н33	119.9	O1—Co1—S1	95.85 (7)
С34—С33—Н33	119.9	O2—Co1—S1	92.24 (7)
C29—C34—C33	119.2 (4)	O3—Co1—S1	176.42 (7)
С29—С34—Н34	120.4	S3—Co1—S1	88.94 (4)
С33—С34—Н34	120.4	O1—Co1—S2	177.27 (7)
C40—C35—C36	119.8 (3)	O2—Co1—S2	92.85 (7)
C40—C35—N4	120.8 (3)	O3—Co1—S2	90.66 (7)
C36—C35—N4	119.4 (3)	S3—Co1—S2	91.86 (4)
C35—C36—C37	119.0 (4)	S1—Co1—S2	86.31 (4)
С35—С36—Н36	120.5		
O1—C1—C3—C4	-4.2 (4)	N2—C2—N1—C1	174.2 (3)
N1—C1—C3—C4	175.6 (3)	S1—C2—N1—C1	-4.0 (4)
O1—C1—C3—C8	177.5 (3)	O1—C1—N1—C2	9.7 (5)
N1—C1—C3—C8	-2.7 (4)	C3—C1—N1—C2	-170.1 (3)
C8—C3—C4—C5	0.6 (5)	N1—C2—N2—C15	178.7 (2)
C1—C3—C4—C5	-177.7 (3)	S1—C2—N2—C15	-2.9 (4)
C3—C4—C5—C6	-0.4 (6)	N1—C2—N2—C9	-3.1 (4)
C4—C5—C6—C7	0.0 (7)	S1—C2—N2—C9	175.3 (2)
C5—C6—C7—C8	0.2 (8)	C20-C15-N2-C2	-79.4 (4)
C6—C7—C8—C3	0.1 (7)	C16—C15—N2—C2	103.1 (4)

C4—C3—C8—C7	-0.5 (5)	C20-C15-N2-C9	102.3 (4)
C1—C3—C8—C7	177.8 (3)	C16—C15—N2—C9	-75.2 (4)
C14—C9—C10—C11	-0.1 (7)	C10-C9-N2-C2	100.3 (4)
N2-C9-C10-C11	179.8 (4)	C14—C9—N2—C2	-79.9 (4)
C9—C10—C11—C12	0.7 (9)	C10-C9-N2-C15	-81.4 (4)
C10-C11-C12-C13	-0.3 (9)	C14—C9—N2—C15	98.5 (3)
C11—C12—C13—C14	-0.7 (8)	N4—C22—N3—C21	-178.5 (3)
C10-C9-C14-C13	-0.9 (5)	S2—C22—N3—C21	-0.8 (5)
N2-C9-C14-C13	179.2 (3)	O2—C21—N3—C22	-9.2 (5)
C12—C13—C14—C9	1.3 (6)	C23—C21—N3—C22	172.3 (3)
C20-C15-C16-C17	0.3 (6)	N3—C22—N4—C35	-174.9 (3)
N2-C15-C16-C17	177.9 (3)	S2-C22-N4-C35	7.1 (4)
C15—C16—C17—C18	-0.7 (7)	N3—C22—N4—C29	2.1 (4)
C16—C17—C18—C19	0.7 (8)	S2—C22—N4—C29	-176.0 (3)
C17—C18—C19—C20	-0.3 (9)	C40—C35—N4—C22	-102.6 (4)
C16—C15—C20—C19	0.0 (6)	C36—C35—N4—C22	79.8 (4)
N2-C15-C20-C19	-177.5 (4)	C40—C35—N4—C29	80.2 (4)
C18—C19—C20—C15	0.0 (8)	C36—C35—N4—C29	-97.3 (4)
O2—C21—C23—C28	-176.1 (4)	C34—C29—N4—C22	-93.6 (4)
N3—C21—C23—C28	2.6 (5)	C30—C29—N4—C22	87.4 (5)
O2—C21—C23—C24	2.7 (5)	C34—C29—N4—C35	83.6 (4)
N3—C21—C23—C24	-178.6 (3)	C30—C29—N4—C35	-95.4 (4)
C28—C23—C24—C25	-1.3 (6)	O3—C41—N5—C42	3.5 (5)
C21—C23—C24—C25	179.9 (4)	C43—C41—N5—C42	-174.3 (3)
C23—C24—C25—C26	2.1 (8)	N6—C42—N5—C41	167.0 (3)
C24—C25—C26—C27	-1.6 (11)	S3—C42—N5—C41	-13.9 (5)
C25—C26—C27—C28	0.3 (12)	N5-C42-N6-C55	-175.0 (3)
C24—C23—C28—C27	-0.1 (8)	S3—C42—N6—C55	5.8 (4)
C21—C23—C28—C27	178.7 (5)	N5-C42-N6-C49	10.1 (4)
C26—C27—C28—C23	0.6 (11)	S3—C42—N6—C49	-169.0 (2)
C34—C29—C30—C31	-0.9(7)	C56—C55—N6—C42	-110.8 (4)
N4—C29—C30—C31	178.2 (4)	C60—C55—N6—C42	69.3 (4)
C29—C30—C31—C32	-0.9 (9)	C56—C55—N6—C49	64.3 (4)
C30—C31—C32—C33	2.4 (9)	C60—C55—N6—C49	-115.7 (4)
C31—C32—C33—C34	-2.3 (8)	C50—C49—N6—C42	63.7 (4)
C30—C29—C34—C33	1.0 (6)	C54—C49—N6—C42	-118.7 (4)
N4—C29—C34—C33	-178.0 (3)	C50—C49—N6—C55	-111.4 (4)
C32—C33—C34—C29	0.5 (7)	C54—C49—N6—C55	66.2 (4)
C40—C35—C36—C37	0.4 (5)	N1-C1-O1-Co1	1.0 (4)
N4—C35—C36—C37	178.0 (3)	C3—C1—O1—Co1	-179.22 (17)
C35—C36—C37—C38	-1.1 (6)	N3—C21—O2—Co1	-15.1 (5)
C36—C37—C38—C39	1.2 (7)	C23—C21—O2—Co1	163.5 (2)
C37—C38—C39—C40	-0.6 (7)	N5-C41-O3-Co1	29.3 (4)
C36—C35—C40—C39	0.1 (6)	C43—C41—O3—Co1	-152.9 (2)
N4-C35-C40-C39	-177.4 (4)	N1-C2-S1-Co1	-7.9 (3)
C38—C39—C40—C35	-0.1 (7)	N2—C2—S1—Co1	174.04 (18)
O3—C41—C43—C44	-2.2 (4)	N3—C22—S2—Co1	24.0 (3)
N5-C41-C43-C44	175.9 (3)	N4—C22—S2—Co1	-158.4 (2)
O3—C41—C43—C48	177.8 (3)	N5-C42-S3-Co1	-4.7 (3)

N5—C41—C43—C48	-4.1 (5)	N6-C42-S3-Co1	174.3 (2)
C48—C43—C44—C45	1.0 (6)	C1	-102.9 (2)
C41—C43—C44—C45	-179.0 (4)	C1	170.9 (2)
C43—C44—C45—C46	-0.5 (7)	C1-O1-Co1-S3	77.8 (2)
C44—C45—C46—C47	-1.5 (9)	C1	-11.1 (2)
C45—C46—C47—C48	2.9 (9)	C21—O2—Co1—O1	-144.6 (3)
C46—C47—C48—C43	-2.4 (8)	C21—O2—Co1—O3	-57.2 (3)
C44—C43—C48—C47	0.4 (6)	C21—O2—Co1—S1	119.7 (3)
C41—C43—C48—C47	-179.6 (4)	C21—O2—Co1—S2	33.3 (3)
C54—C49—C50—C51	-0.6 (6)	C41—O3—Co1—O1	-127.1 (2)
N6-C49-C50-C51	177.1 (3)	C41—O3—Co1—O2	147.3 (2)
C49—C50—C51—C52	0.3 (6)	C41—O3—Co1—S3	-37.4 (2)
C50—C51—C52—C53	0.3 (6)	C41—O3—Co1—S2	54.5 (2)
C51—C52—C53—C54	-0.6 (6)	C42—S3—Co1—O1	109.02 (12)
C50—C49—C54—C53	0.3 (6)	C42—S3—Co1—O3	21.91 (12)
N6-C49-C54-C53	-177.4 (3)	C42—S3—Co1—S1	-155.12 (11)
C52—C53—C54—C49	0.3 (6)	C42—S3—Co1—S2	-68.85 (11)
C60—C55—C56—C57	-1.1 (6)	C2—S1—Co1—O1	11.72 (12)
N6C55C56C57	179.0 (4)	C2—S1—Co1—O2	97.33 (12)
C55—C56—C57—C58	0.9 (7)	C2—S1—Co1—S3	-78.02 (10)
C56—C57—C58—C59	-0.4 (9)	C2—S1—Co1—S2	-169.95 (10)
C57—C58—C59—C60	0.2 (9)	C22—S2—Co1—O2	-30.16 (12)
C56—C55—C60—C59	0.9 (6)	C22—S2—Co1—O3	55.86 (12)
N6—C55—C60—C59	-179.2 (4)	C22—S2—Co1—S3	148.96 (11)
C58—C59—C60—C55	-0.4 (7)	C22—S2—Co1—S1	-122.23 (11)

Fig. 1

